
CHAINING SEARCH NOTEBOOK – QUICK START

The Chaining search notebook is an advanced digital environment for linguistic research. It supplies more than

common tools like an graphic user interface for searching a lexicon or a corpus. The notebook provides the user

with a set of functions allowing highly customizable search and data processing operations. One can write

custom Python scripts to do multiple searches and process the results, draw charts, and of course ‘chain’

operations. That is: the results of the one search can be programmatically re-used in another search, in another

source, in another way.

INSTALLATION

The installation procedure of the notebook is fully described in the README.md file on GitHub. Please refer to

this file. Installation scripts are provided for both Linux/Mac and Windows.

LET’S START

Once the notebook is installed and launched as indicated in the README.md file, your browser will

automatically open the following page:

As shown hereabove, the notebook consists of some folders and files. Only two files are relevant to you now:

 Examples.ipynb and

 Sandbox.ipynb

The first file, Examples.ipynb, is a notebook filled with case studies. These are examples showing how to

perform search and data processing operations of several types and complexity.

Once these examples have inspired you, you’ll be ready to go ahead with the second file, Sandbox.ipynb,

which is an empty notebook, where you can try things out or build a complex script straight away.

The following sections will present both files and explain what you can do with those.

CASES STUDIES / EXAMPLES

The Examples.ipynb file can be accessed but just clicking on it. The file will open in a new tab called

‘Examples’ which should look like this:

Folder structure

 The ‘env’ folder contains code for running the notebook environment and must be

left alone.

 The ‘chaininglib’ folder contains the libraries that enables the functions you’ll be

able to use in your scripts (the so-called API).

 The ‘doc’ folder contains full documentation about those functions. You don’t need

to browse it, as you will be provided with a link straight to the relevant

documentation file in a short moment.

Make sure it’s working

First of all, when opening this file for the first time, we have to make sure that we are using the right kernel and

that the kernel is trusted.

Here is how to do that:

 First: The name of the kernel in use is shown in the horizontal grayish top bar (see picture). On its right

edge, it should show the word ‘env’. If it does, you’re ok. If it doesn’t, click menu item ‘Kernel’ in the

same bar and choose option ‘Change kernel’; this will opens a pulldown menu where you must click

the ‘env’ option. The kernel name on the right side of the bar must now read ‘env’ as well.

 Second: On the left side of the kernel name, there must be a small box saying ‘Trusted’. If it does,

we’re done. But if it says ‘Not trusted’ instead: click on it, and when a confirmation window pops up,

click on ‘Trust’. Done!

OVERVIEW

Now we are ready to have a look at the examples. We have quite a list of those:

As the screenshot shows, the examples are ordered by category. You can visit an example straight by clicking

on its name.

RUNNING A CASE STUDY

We’ve just seen the list of available case studies/examples. Now, clicking on the first example (‘corpus search’)

will lead you to this screen section:

Each example is built quite the same way as above. The title of the example is followed by some explanation,

an a cell with some Python code in it.

To run the code:

 Click into the cell

 Then go to the horizontal top bar and click on ‘Run’

Once we’ve done that, some output should appear under the code cell. In this particular case, our output is a

search interface, in which we can enter a search query and choose a corpus to search:

To start the search, go to the next code cell.1 This following piece of code reads your input out of the interface

and start a search with that:

When this code cell is clicked upon and subsequently run, the search results will appear underneath as

expected:

This is all you need to know to be able to explore the following example! For each example, click the code cell

you want to run the code of, click on ‘Run’ in the horizontal top bar, and see the results.

1 A mistake commonly made in this particular case study is to start the search by clicking on ‘Run’ in the
horizontal top bar again. But since the cell that contains the code for generating the search interface is still
active (because that’s the last element you clicked on or typed in), clicking on ‘Run’ again will just cause the
interface to be rebuilt. So the search won’t start at all. To be able to start the search, you need to go to the
next code cell. This cell contains code that picks up the input from the interface and start the search with it.

Important remark

Note that in some rare cases, an example can only be run when the previous example was run

before. But in those cases, the introduction text indicated that.

YOU OWN SANDBOX

Now you’re finished with the case studies, let’s look at the Sandbox.ipynb file. That file is the place where

we’ll build our own scripts.

To access this file, we’ll first have to go back to the browser tab called ‘Home’. This tab shows the list of files or

folders available in our notebook installation.

Look up the Sandbox.ipynb file in the list and click on it. The file will open in a new tab and should look like

this:

Just like in the Case studies screen, you have cells at your disposal. You can type your own code there,

following what we’ve seen in the Case studies, and also the methods documentation. Both can be accessed

again from this screen by clicking the corresponding link (see picture). Finally, click on the ‘Run’ button to

execute your code.

Happy coding!

