/instituut voor
de Nederlandse
taal/

CHAINING SEARCH NOTEBOOK — QUICK START

The Chaining search notebook is an advanced digital environment for linguistic research. It supplies more than
common tools like an graphic user interface for searching a lexicon or a corpus. The notebook provides the user
with a set of functions allowing highly customizable search and data processing operations. One can write
custom Python scripts to do multiple searches and process the results, draw charts, and of course ‘chain’
operations. That is: the results of the one search can be programmatically re-used in another search, in another
source, in another way.

INSTALLATION

The installation procedure of the notebook is fully described in the README . md file on GitHub. Please refer to
this file. Installation scripts are provided for both Linux/Mac and Windows.

LET’S START

Once the notebook is installed and launched as indicated in the README . md file, your browser will
automatically open the following page:

~ Jupyter Qut | Logout
Files Running Clusters Nbextensions
Select items to perform actions on tham. Upload | New = || &

o |~ M Name« Last Modified File size
[0 [3 chaininglib 12 days ago

O [Odoc 21 days ago

O O env 20 days ago

[& Examples.ipynb 7 days ago 39.2kB
O & sandbox.ipynb Running 21 minutes ago 132 kB
O DO install.bat 17 days ago 914 B
[[install.sh 18daysage 1.09kB
0 3 Makefile 21 days ago 598 B

]

As shown hereabove, the notebook consists of some folders and files. Only two files are relevant to you now:

e Examples.ipynband
e Sandbox.ipynb

The first file, Examples. ipynb, is a notebook filled with case studies. These are examples showing how to
perform search and data processing operations of several types and complexity.

Once these examples have inspired you, you’ll be ready to go ahead with the second file, Sandbox . ipynb,
which is an empty notebook, where you can try things out or build a complex script straight away.

The following sections will present both files and explain what you can do with those.

Folder structure

The ‘enVv’ folder contains code for running the notebook environment and must be
left alone.

The ‘chaininglib’ folder contains the libraries that enables the functions you’ll be
able to use in your scripts (the so-called API).

The ‘doc’ folder contains full documentation about those functions. You don’t need

to browse it, as you will be provided with a link straight to the relevant

documentation file in a short moment.

CASES STUDIES / EXAMPLES

The Examples.ipynb file can be accessed but just clicking on it. The file will open in a new tab called
‘Examples’ which should look like this:

: Jupyter Examples @ussaes o Logout

File Edit View Insert Cell Kemel Widgets Help Trusted | env O

B o+ = AR 4+ MRun B C W Markdown v =

v Examples Chaining search

This notebook contains a number of examples of chaining linguistic resources: corpora, lexica and
treebanks. Try the examples, or copy the code and customize the examples in the Sandbox.

v List of examples

Corpora

= Corpus search
= Frequency of zeker+verb and vast+verb compared
= Train a POS tagger on an annotated corpus

a Qearch in cormne and filker nn matadata

Make sure it’s working

First of all, when opening this file for the first time, we have to make sure that we are using the right kernel and
that the kernel is trusted.

File Edit View Insert Cell Kemel Widgeats Help rusted | env Q

Here is how to do that:

e First: The name of the kernel in use is shown in the horizontal grayish top bar (see picture). On its right
edge, it should show the word ‘enV’. If it does, you're ok. If it doesn’t, click menu item ‘Kernel’ in the
same bar and choose option ‘Change kernel’; this will opens a pulldown menu where you must click
the ‘env’ option. The kernel name on the right side of the bar must now read ‘env’ as well.

e Second: On the left side of the kernel name, there must be a small box saying ‘Trusted’. If it does,
we’re done. But if it says ‘Not trusted’ instead: click on it, and when a confirmation window pops up,
click on ‘Trust’. Done!

OVERVIEW

Now we are ready to have a look at the examples. We have quite a list of those:

List of examples

Corpora

= Corpus search

» Frequency of zeker+verb and vast+verb compared
= Train a POS tagger on an annotated corpus

» Search in corpus and filter on metadata
Visualizing_h-dropping

Generate lexicon from several corpora

Lexica

« Lexicon search

Corpus +* lexicon

« Retrieve synonyms from DialMaNT, look up in Gysseling

« Build a frequency list of the lemma of some corpus output

= Find occurences of attributive adjectives not ending with -e,_even though they are preceeded
by a definite article

= Look up inflected forms and spelling variants for a given lemima in & corpus

» Corpus frequency list of lemmata from lexicon with given lemma

= Build a frequency table of some corpus, based on lemmata of a given lexicon

» Search corpus for wordforms of lemma not included in lexicon

Treebanks

» Treebank search
« Which objects of verb geven occur?

As the screenshot shows, the examples are ordered by category. You can visit an example straight by clicking
on its name.

RUNNING A CASE STUDY

We've just seen the list of available case studies/examples. Now, clicking on the first example (‘corpus search’)
will lead you to this screen section:

File Edit View Insert Cell Kemel Widgets Help Trusted | env O

B+ 3 @B 4+ ¥ MHRun B C | Narkdown v | =

Corpus search

s Run the cell below to show the UI, and fill in your search guery
« Choose one of the corpora:
= zeebrieven: The Brieven als Buit (Letters as Loot) corpus, consisting of 17th and 18th
century letters from Dutch sailors
= gysseling: Corpus Gysseling, 13th century Dutch
= chn-extern: Externally accessible part of the Corpus Hedendaags Nederlands. Corpus of
contemporary Dutch from the Dutch Antilles and Suriname, retrieved from newspapers
and websites.
= opus: QPUS corpus of Dutch subtitles

In []: from chaininglib.ui.search import create_corpus_ui
from chaininglib.ui.dfui import display df, get_uploader

Create corpus UI, creates references to field contents
corpusQueryField, corpusField = create_corpus_ui()

Each example is built quite the same way as above. The title of the example is followed by some explanation,
an a cell with some Python code in it.

To run the code:

e C(lick into the cell

e Then go to the horizontal top bar and click on ‘Run’

Once we’ve done that, some output should appear under the code cell. In this particular case, our output is a
search interface, in which we can enter a search query and choose a corpus to search:

In [1]: from chaininglib.ui.search import create_corpus_ui
from chaininglib.ui.dfui import display df, get_uploader

Create corpus UI, creates references to field contents
corpusQueryField, corpusField = create_corpus_ui()
CAL query: | [lemma="boek"]

Corpus: | zeebrisven v

To start the search, go to the next code cell.? This following piece of code reads your input out of the interface
and start a search with that:

« Click the cell below and press Run to perform the given query

In []: from chaininglib.search.CorpusQuery import *

#from chaininglib import search

guery= corpusQueryField.value

corpus_name = corpusField.value

df _corpus = create_corpus(corpus_name}.pattern{query).search{).kwic()
#df_corpus = Load_dataframe('mijn_resultaten.csv")
display_df(df_corpus, labels="Results")

When this code cell is clicked upon and subsequently run, the search results will appear underneath as
expected:

Results

left context 'E'""'g ""‘3 word 0 right context
0 heeft 4 gl 0 Aen boek MNOU boeken en pampier en pennen en
1 lijeue man steli alles te hoek MNOU hoeck waet ghij uijt geft dat
2 alzoo hij niet op de boek MNOU bouck en stondt en hij heeft
3 Schrijfpampier a 6 Srt boek MNOU boel. 50 difto ongsneeden ditto a
4 voorne missive, dat UEDs mijn hoek NOU boeken bij bemtrop laat verkoopen, als
5 verpeeld hebbe, dat wat geleerda hosk NOU boeken aan gaat, schouten altoos geprafereert
[khaiida arcnrataces mnada ardar dar knals kIOl hnarkan B Vinnrcintinhaiid dia Ariics il

This is all you need to know to be able to explore the following example! For each example, click the code cell
you want to run the code of, click on ‘Run’ in the horizontal top bar, and see the results.

Important remark

Note that in some rare cases, an example can only be run when the previous example was run
before. But in those cases, the introduction text indicated that.

1 A mistake commonly made in this particular case study is to start the search by clicking on ‘Run’ in the

horizontal top bar again. But since the cell that contains the code for generating the search interface is still
active (because that’s the last element you clicked on or typed in), clicking on ‘Run’ again will just cause the
interface to be rebuilt. So the search won’t start at all. To be able to start the search, you need to go to the
next code cell. This cell contains code that picks up the input from the interface and start the search with it.

YOU OWN SANDBOX

Now you’re finished with the case studies, let’s look at the Sandbox . ipynb file. That file is the place where
we’ll build our own scripts.

To access this file, we'll first have to go back to the browser tab called ‘Home’. This tab shows the list of files or
folders available in our notebook installation.

" Home ¥ & Examples b4 +

L

— Jupyter

Files Running Clusters Mbextensions
Select items to perform actions an them.

0|~ |00/

3 chaininglib

env

Li

Examples.ipynb

L]

Sandbox.ipynb

[J

install bat

J

Look up the Sandbox . ipynb file in the list and click on it. The file will open in a new tab and should look like
this:

: J u pyter 83 nd bOX {unzaved changes) ? Logout
File Edit View Insert Cell Kemel Widgets Help Trusted | env O
B+ = & B 4+ % HRuin B C M Code v| | E3

Chaining search: Sandbox
UUse this notebook to combinge linguistic resources yourself: corpora, lexica and treebanks.

= Use methods from our library chaininglib, described in the documentation
« To get an idea of the possibilities and to copy code, go to the Examples notebook.

In []: dimport chaininglib

In []:

Just like in the Case studies screen, you have cells at your disposal. You can type your own code there,
following what we’ve seen in the Case studies, and also the methods documentation. Both can be accessed

again from this screen by clicking the corresponding link (see picture). Finally, click on the ‘Run’ button to
execute your code.

Happy coding!

